The Pencil Buoy Method
Installation of Subsea Structures without Offshore Crane Vessel

Trine Risøy, Bergen, 04.06.2008
AKER MARINE CONTRACTORS (AMC)

35 years experience worldwide:

- Subsea SURF: Structures, umbilicals, risers & flow-lines
- Floater installation and mooring system
- Topsides transportation and floatover
- Field abandonment
AGENDA

- Pencil Buoy Method Overview
- Shallow Water Pre-Rigging
- Main Padeye Design
- Full Scale Measurements
- Conclusion
THE PENCIL BUOY METHOD

- AMC Patented - Submerged transportation and installation
- Inshore pre-rigging
- Submerged tow - unrestricted seasonal storm
- Lowering to seabed on site
ANIMATION

The Pencil Buoy Method
SHALLOW WATER PRE-RIGG

- Start tow - structure connected to vessel winch wire
- Minimize rigging length to ensure as small module draft as possible
- Ensure safe clearance between lifting gear and vessel propeller/rudder
- Present template example:
 approx. 40 meters
ADVANTAGES – PENCIL BUOY METHOD

- No need for large deck space
- No crane required offshore
- Avoid pendulum motions in air
- Avoid slamming loads
PENCIL BUOY DIMENSIONS

- Carrying capacity: 250 tonnes
- Weight: 55 tonnes
- Height: 29.5 meters
- Diameter: 4.5 meters

- Pencil Buoy with carrying capacity of 150 tonnes exists
- Carrying capacity beyond 350 tonnes is developed
PADEYE IMPROVEMENTS

- Fatigue challenges ⇒ Redesign
- Circular vs. triangular shaped opening
- Flexible connection
- Lower stresses at fatigue sensitive areas
- Robust fatigue performance
THE LANGELED CASE

- Dry weight: 325 tonnes
- Submerged weight: 195 tonnes
- Dimensions: 19.7 x 6.0 x 5.8 meters
- Towing draft: 80 meters
COMPARISON OF STRESSES

Sea State

Hydrodynamic Analyses
 Force Time Series
 FE Model
 Theoretical Stress Time Series

Full Scale Measurements
 Actual Stress Time Series
ANALYSIS OVERVIEW

- Sea States
- Hydrodynamic Analyses: Padeye Forces
- FE Model: Stresses at Critical Locations
- ULS Code Check
- ULS Stress Check
- Rain Flow Counting
- Fracture Mechanics
- S-N Curve
- Fatigue Damage
COMPARISON – DYNAMIC STRESS

Analysed Results

Measured Results

#3 - Analysed Dynamic Stress corresponding to Gauge 1

#3 - Measured Dynamic Stress from Gauge 1
COMPARISON

Standard Deviation of Dynamic Stress - Sea State 1

Standard Deviation of Dynamic Stress - Sea State 2

Standard Deviation of Dynamic Stress - Sea State 3

© 2008 Aker Marine Contractors

Pencil Buoy Method

Slide 16

Aker Solutions
DISCUSSION OF LANGELED CASE

Sources of Inaccuracy

- Visually observation of wave data
- Strain gauges – position and corresponding stresses
- Computer tools accuracy

Conclusion

- Measured and analysed results compares well
- Reliable analysis methodology established
- Padeye inspections continued
CONCLUSION OF LANGELED CASE

- Measured and analysed results compares well
- Reliable analysis methodology established
- Padeye inspections continues
A SAFE AND RELIABLE SOLUTION

- The Pencil Buoy method is thoroughly tested
- Easily generalized to shallow pre-rigging locations
- Reduced cost due to vessel type
- Submerged tow – unrestricted
- Analysis strategy is verified
THANK YOU FOR YOUR ATTENTION!
Copyright

Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction.
Disclaimer

This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations, estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Solutions ASA and Aker Solutions ASA’s (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as “expects”, “believes”, “estimates” or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Solutions’ businesses, oil prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although Aker Solutions ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. Aker Solutions ASA is making no representation or warranty, expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither Aker Solutions ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

Aker Solutions consists of many legally independent entities, constituting their own separate identities. Aker Solutions is used as the common brand or trade mark for most of these entities. In this presentation we may sometimes use “Aker Solutions”, “we” or “us” when we refer to Aker Solutions companies in general or where no useful purpose is served by identifying any particular Aker Solutions company.